
We’ll get to the CLT in a few slides, but first some preliminaries.

The tool we need to prove the CLT is the sequence of moments of
a probability distribution.

Moments provide a way of describing distributions different from
density functions or c.d.f.s, and better suited to the CLT.
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The nth moment Mn of a RV X is defined to be E(X n),

Mn = E(X n).

This may not exist, especially when n is large.
But if it does exit for all n, those numbers together tell you pretty
much everything you need to know about X .
For example,

µX = M1

σX =
√

M2 −M2
1 .

If g(x) = a0 + a1x + a2x2 + · · ·+ akxk , then

E (g(X )) = a0 + a1M1 + a2M2 + · · ·+ akMk .

In other words we can compute the expected value of any
polynomial function of X just using the Mn’s.
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We can even compute things like

P(a ≤ X ≤ a + dx).

How?

Define

b(x) =
1√
2πε

e−
1
2
( x−a
ε

)2 .

This is just a very narrow bell curve, in which 99% of the bell is
within 3ε of a.

Note that b is equivalent to a normal p.d.f., but I’m not using it
here as a p.d.f., I’m using it like the g on the previous slide: I’m
going to find E(b(X )).

Since b is essentially a polynomial (an infinite one, but still...) it
has the same property as g : that its expectation is determined by
the Mn’s.

And the shape of b is useful because it focuses attention on a
small range of x values.
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Now suppose that X is a continuous RV with p.d.f. f .
If ε is small enough, then we can assume that f is constant over
almost the entire bell.

That means

E(b(X )) =

∫ ∞
−∞

b(x)f (x) dx

=

∫
|X−a|>3ε

b(x)f (x) dx +

∫
|X−a|≤3ε

b(x)f (x) dx

≈ 0 + f (a)

∫
|X−a|≤3ε

b(x) dx ≈ f (a).
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This means that the density function f of X is determined by the
expected values of RV’s like b(X ).

And that in turn means that f is determined by the Mn’s, because
although b(x) is not a polynomial, it is a limit of polynomials:

b(x) =
1√
2πε

e−
1
2
( x−a
ε

)2

=
1√
2πε

∞∑
k=0

(−1
2( x−a

ε )2)k

k!
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In a similar way it can be shown that those functions b also
determine the probabilities in discrete distributions.

I’ll consider it established now that the Mn’s determine all the
properties of a distribution. Hence if we can show that two
distributions have finite and equal Mn for all n we will know they
are actually the same distribution.
Now let’s use the moments Mn to prove the Central Limit
Theorem.
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Central Limit Theorem

Theorem
Let Xi for i = 1, 2, 3, . . . be i.i.d. RVs with mean 0 and s.d. 1.
Define

An =
1√
n

n∑
i=1

Xi .

Then as n→∞ the distribution of An approaches the standard
normal.

Note that the particular distribution of the Xi ’s does not matter —
the limiting distribution is the same no matter what you start out
with.
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The basic idea is to show that the moments of the limiting
distribution depend only on the first and second moments of the Xi

— nothing else.

Let’s warm up by computing a few easy moments of An.

E(An) = E

(
1√
n

n∑
i=1

Xi

)
=

1√
n

(
n∑

i=1

E(Xi )

)
= 0

because all the Xi have mean 0.
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Second moment:

E(A2
n) = E

( 1√
n

n∑
i=1

Xi

)2
 =

1

n

 n∑
i=1

E(X 2
i ) +

∑
i 6=j

E(XiXj)



=
1

n
[n + 0] = 1.

So now we know that An has mean 0 and s.d. 1 for all n.

We conclude therefore the limiting distribution of the An also has
mean 0 and s.d. 1.
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Third moment.

E(A3
n) = E

( 1√
n

n∑
i=1

Xi

)3


=
1

n3/2

 n∑
i=1

E(X 3
i ) +

∑
i 6=j

E(XiX
2
j ) +

∑
distinct i ,j ,k

E(XiXjXk)


=

1

n3/2

[
nE(X 3

1 ) + n(n − 1)E(X1)E(X 2
2 ) +

(
n

3

)
E(X1)3

]

=
1

n3/2
(n M3)

where M3 is the third moment of X1.
But this expression goes to 0 as n→∞.
So the third moment of the limiting distribution of An is 0.
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Note that so far the only higher moment of the Xi that has
appeared has been M3 and that ended up cancelling as n→∞.

One obvious pattern you’ll have noticed is that any term involving
a factor like E(Xi ) drops out because that value is 0.

So the only terms to worry about are those in which each factor is
a second or higher moment of Xi .

There’s another pattern lurking here though...

Andrew Dabrowski CLT



Note that so far the only higher moment of the Xi that has
appeared has been M3 and that ended up cancelling as n→∞.

One obvious pattern you’ll have noticed is that any term involving
a factor like E(Xi ) drops out because that value is 0.

So the only terms to worry about are those in which each factor is
a second or higher moment of Xi .

There’s another pattern lurking here though...

Andrew Dabrowski CLT



Note that so far the only higher moment of the Xi that has
appeared has been M3 and that ended up cancelling as n→∞.

One obvious pattern you’ll have noticed is that any term involving
a factor like E(Xi ) drops out because that value is 0.

So the only terms to worry about are those in which each factor is
a second or higher moment of Xi .

There’s another pattern lurking here though...

Andrew Dabrowski CLT



Note that so far the only higher moment of the Xi that has
appeared has been M3 and that ended up cancelling as n→∞.

One obvious pattern you’ll have noticed is that any term involving
a factor like E(Xi ) drops out because that value is 0.

So the only terms to worry about are those in which each factor is
a second or higher moment of Xi .

There’s another pattern lurking here though...

Andrew Dabrowski CLT



Consider an example: Suppose we’re computing the fifth moment
of An. One expression we’ll have to deal with is∑

i 6=j

E(X 2
i )E(X 3

j ).

Each summand is equal to M2M3, and the number of summands is
no more (actually fewer than) n2.

≤ n2M2M3

Now recall that An includes a factor of 1√
n

, so that the fifth

moment of An in includes as factor of 1√
n

5 = 1
n5/2 .

Multiplying these two expressions together gives M2M3√
n

which once

again approaches 0 as n→∞.
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Evidently very few terms survive the limit. In fact the only
expressions that don’t cancel in the limit are those involving only
second moments of Xi :

1

nk/2

∑
distinct i1,i2,...,ik/2

E(X 2
i1)E(X 2

i2) . . .E(X 2
ik/2

)

=
1

nk/2

(
n

k/2

)
M

k/2
2 .

Since
( n
k/2

)
is on the order of nk/2, this term does not cancel as

n→∞.

Note that even this is only possible if k is even,
so we conclude that odd moments of An approach 0 in the limit.
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n→∞.

Note that even this is only possible if k is even,
so we conclude that odd moments of An approach 0 in the limit.
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OK, that was the hard part, the rest is easy.

Now we know that the limiting distribution of An depends only on
M1 and M2. That means that any Xi ’s with the same mean (0)
and the same s.d. (1) will have the same limiting distribution.

Well it just so happens that we know a distribution with mean 0
and s.d. 1 which also just so happens to play very well with linear
combinations of itself.

I refer of course to the standard normal distribution.
If the Xi are standard normal, then An, being a linear combination
of independent standard normals is also normal.

Moreover we calculated the mean and s.d. of An earlier and they
turned out to be 0 and 1 respectively.

I.e., if the Xi ’s are standard normal then so are the An’s.

And if every single An is standard normal, then the limiting
distribution is also.
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To put this together:
Since there is some distribution for the Xi which produces the
standard normal as the limit of An,

then in fact every distribution, once it’s been standardized to have
mean 0 and s.d. 1, must produce the standard normal in the limit
also.

That’s because we have shown that the limiting distribution
depends only on the mean and s.d. of the original distribution.

Q.E.D.
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